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Convection in a spherical capacitor
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Department of Physics, University of New Orleans, New Orleans, LA 70148, USA

(Received 23 May 1999 and in revised form 15 June 2001)

Real-time holographic interferometry and shadowgraph visualization are used to study
convection in the fluid between two concentric spheres when two distinct buoyancy
forces are applied to the fluid. The heated inner sphere has a constant temperature that
is greater than the constant temperature of the outer sphere by ∆T . In addition to the
usual gravitational buoyancy from temperature induced density differences, another
radial buoyancy is imposed by applying an a.c. voltage difference, ∆V between the
inner and outer spheres. The resulting electric field gradient in this spherical capacitor
produces a central polarization force. The temperature dependence of the dielectric
constant results in the second buoyancy force that is especially large near the inner
sphere. The normal buoyancy is always present and, within the parameter range
explored in our experiment, always results in a large-scale cell that is axisymmetric
about the vertical. We have found that this flow becomes unstable to toroidal or
spiral rolls that form near the inner sphere and travel vertically upward when ∆T
and ∆V are sufficiently high. These rolls start near the centre sphere’s equator and
travel upward toward its top. The onset of this instability depends on both the
temperature difference at onset ∆Tc and the voltage difference at onset ∆Vc and
these two quantities appear to be related, within the parameter range accessible to

our experimental system, by a power law ∆Vc ∝ ∆T
1/3
c . Measurements of the heat

transfer show that these travelling rolls increase the heat transfer at onset. Far above
onset, the heat transfer may actually decrease with increasing ∆T . The travelling
roll’s frequency increases with increasing ∆T near onset and with increasing ∆V far
above onset. These results have been interpreted in terms of a flow structure that
includes a thermal boundary-layer-like behaviour. This layer has a radial width that
increases from the bottom pole to an unstable ‘latitude’ near the equator where the
rolls appear.

1. Introduction
Thermal convection in spherical geometry includes many important situations

in physics, chemistry and engineering (Chandrashakar 1961; Cloot & Lebon 1990;
Hegseth, Rashidnia & Chai 1996). Spherical geometry is also important in geophysical
flows, which provide insights into climatology, geology, meteorology and planetary
science, as well as inspiring such concepts such as deterministic chaos and two-
dimensional turbulence (Lorenz 1976). In planetary atmospheres, oceans, mantles and
cores, the rapid rotation, the density stratification, and the spherical geometry are
considered fundamental features in large-scale geophysical fluid dynamics (Pedlosky
1979; Cushman-Roisin 1994). The latitude dependent Coriolis force and the strongly
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nonlinear equations of motion in geophysical fluid flows have led to a dependency
on asymptotic mathematical methods and computational methods for theoretical
understanding. The small expansion parameters used in asymptotic methods allow
only a small window of the parameters of the system to be studied. This method
may, for example, limit the validity to a small region in latitude, called a beta
plane, and cannot analyse global circulation. Numerical models are remarkable in
that they can do much to simulate geophysical flows (Fletcher 1991). They try to
include many important effects, such as geographical influences on the boundary layer,
condensation and precipitation of water, and radiation heat transfer. These methods
are limited, however, by the large difference in the spatial and temporal scales of
the many structures that are strongly coupled through the nonlinear interactions,
especially on the global scale. As in many turbulence simulations, representing the
small-scale features of the flow requires using some ad hoc assumptions because of
computational limitations (Minier 1998). This procedure may miss many nonlinear
interactions between the structures at different scales.

Many of the data regarding geophysical flows have come from direct planetary
observations where there are only a few cases available, corresponding to a small
subset of the possible values of the control parameters for this class of flows. Al-
though no experimental system is perfect, nonlinear interactions over a large-scale
range are retained and control parameters may be continuously tuned in a wide
range. At the very least, a well-controlled experiment can provide important infor-
mation to help validate numerical models. As emphasized in many previous works,
understanding geophysical flows when driven by thermal forcing from buoyancy is
of a great importance (Carrigan & Busse 1983). In a well-controlled experimental
system, simplifications to the ‘real’ situation can be made so that competing effects,
that often occur simultaneously, can be eliminated and examined separately. In our
experimental system discussed below, several such simplifications have been made.
Specifically, our experimental system has a central-force applied to an incompressible
fluid in spherical geometry. It is also roughly similar in geometry to a planetary
liquid outer core. The central force is created using an a.c. electric field in a spherical
capacitor filled with dielectric fluid between the spheres. Because of the temperature
dependence of the dielectric constant and the temperature dependence of the fluid
density, two buoyancy forces drive this flow when the inner sphere is heated to a
higher temperature than the outer sphere.

Our system is limited in geophysical similarity because it is not rotated and it is
also subjected to the usual gravitational buoyancy force from the Earth that breaks
the spherical symmetry. Our system is, however, analogous to some astrophysical
situations where a spherical body is subjected to both a central force and non-central
forces such as a strong tidal interaction in a binary planet or a binary star system.

2. Background
An electric field influences a dielectric fluid in several ways. These influences include

the modification of the thermodynamics of a fluid and the mechanical body force
exerted on a fluid in a non-uniform field (Landau & Lifshitz 1960, 1982). Because
the electric field produces both attractive and repulsive forces on positive or negative
charges, it can produce many different bulk effects. These effects include the force
on any charged fluid element and the polarization of the charge distribution of
non-polar molecules to produce a dipole moment. This induced dipole moment is
created because the average positions of the positive and negative bound charges in
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Figure 1. A cross-section of the experimental apparatus. The inner sphere, made of brass, is
electrically earthed, has a thermocouple embedded in it to measure temperature, and is heated with
a nichrome wire coil glued near its centre. A high voltage V = ∆V is applied to the outer sapphire
sphere while the inner sphere is earthed. ri is the outer radius of the inner sphere, ro is the inner
radius of the outer sphere, and the gap between the spheres, d, is d = ro− ri. The dimensionless gap
or the aspect ration, Γ , is defined using ri as a length scale, Γ = d/ri.

a molecule become spatially separated as the field pulls the nucleus in one direction
and the electrons in the opposite direction. If a molecule has a permanent dipole
moment then the field produces a torque that tends to align the charge with the
electric field. In other words, the positively charged portion of the molecule is forced
in the direction of the field and vice versa for the negatively charged portion. In
a non-uniform field, or an electric field gradient, such a polarized molecule feels a
net force from the field toward the region of higher field intensity (i.e. the charge at
the higher field intensity always feels a stronger force than the other charge). The
result, in the continuum limit is a body force in the fluid (Landau & Lifshitz 1960,
1982). In an a.c. field, the dipole moment remains aligned with the field, preserving
the attraction toward the higher field intensity.

In spherical geometry, such as concentric spheres with dielectric fluid between them
(the spherical capacitor) shown in figure 1, the electric field gradient produces a central
body force. When the central sphere is heated, the change in the dielectric constant
with temperature (i.e. γ = γ(T ) where γ is the dielectric variability) produces a buoy-
ancy in the presence of the polarization force field. This effect has been used previously
to provide results of geophysical significance by also rotating the system including
banana cells (rapid rotation and heating), soccer-pattern (heating and slow rotation),
turbulence, Hadley cells (Hart 1976; Hart, Glatzmaier & Toomre 1986) (low rotation
and buoyancy from terrestrial g). The buoyancy from the earth’s gravity was avoided
in these experiments by performing them in the weightlessness of an orbiting space-
craft. If the system is too large, it is difficult to obtain an appreciable effective gravity
compared to g (g is the acceleration due to terrestrial gravity, 9.8 m s−1) using an elec-
tric field below the breakdown voltage. We have found, however, that it is possible to
obtain such a large effective gravity in a small system (Hegseth, Garcia & Amara 1999)
creating the possibility of terrestrial experiments where normal buoyancy is compar-
able to the buoyancy from the polarization force. Unfortunately, such a small system
makes it difficult to obtain a small aspect ratio, Γ , that would be similar to typical at-
mosphere or ocean where Γ is defined in figure 1. There are, however, other geophysi-
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cal systems, such as a planetary core, that have a large aspect ratio. In the following,
we present an experimental study of an instability caused by the radial buoyancy from
an imposed electric field gradient and an imposed temperature gradient in spherical
geometry without rotation, as a first step in studying large-scale geophysical flows.

3. Experimental conditions
If the dielectric properties of the fluid change from point to point then a uniform

field may exert a force on the fluid. By contrast, a non-uniform field will exert a force
on a uniform dielectric owing to the net force that such an electric field gradient exerts
on each dipole, as discussed above. The net pondermotive force (per unit volume) is,

f = ρqE − 1
2
ε0E

2∇κ+ 1
2
ε0∇

(
E2 dκ

dρ
ρ

)
, (1)

where ρq and ρ are the charge and mass density, respectively, E is the electric field, ε0
and ε are the permitivity of free space and the fluid, respectively, and κ = ε/ε0 is the
dielectric constant ρqE is the force per unit volume on any free charges in the fluid
(the electrophoretic force), ( 1

2
ε0)E

2∇κ is sometimes called the dielectrophoretic force,

and ( 1
2
ε0)∇{E2(dκ/dρ)ρ} is sometimes called the electrostrictive force (Stratton 1941).

The electrophoretic force is typically large compared to the other forces in (1). All
dielectric media have a small amount of ρq making an electrophoretic force. This
effect can complicate or dominate the dielectrophoretic and electrostrictive effects.
However, it is possible to define a relaxation time, τ, for free charge carriers subjected
to an electric field, ρq = ρq0e

−t/τ where τ = κε0/σ, and σ is the conductivity of the
fluid. If this relaxation time, τ, is large compared to the period, Tf , of an a.c. field
(τ� Tf), then the charge carriers will not have time to respond to the applied field,
essentially eliminating the ρqE force, any current, and ohmic heating from such a
current. The other two forces, depending on E2, will not be similarly affected.

The inner sphere is positioned in the centre of the outer sphere, to within 0.2%, by
using several stiff electrically conductive wires for grounding, heating current, and a
thermocouple. In an ideal spherical capacitor with a potential difference, ∆V , applied
between the inner sphere of radius ri and the outer sphere of radius ro, the electric
field is in the radial direction with a magnitude of:

E =
∆Vriro
dr2

(2)

with a gap between the spheres of d = ro − ri. This electric field is distorted from a
radial field in the region of the wires. We have minimized this distortion by twisting
the wires together when they pass through the fluid to the inner sphere. We have also
run our experiment both with the wires going up and with the wires going down. We
have not seen any qualitative or quantitative difference in the experimental results
between these two orientations.

As discussed above, the dielectrophoretic force in an incompressible fluid generates
a buoyancy force associated with the temperature change in the dielectric constant.
This change, κ = κa(1 − γ∆T ), is analogous to the buoyancy from density changes
ρ = ρa(1 − β∆T ) (κa is the ambient dielectric constant, γ is the dielectric variability
γ = ∆κ/(κa∆T ), ρa is the ambient density, and β is the thermal expansion coefficient).
In fact, the buoyancy from dielectric variations reproduces the Bousinesq equations
of motion with the forcing on the fluid in this approximation given by F = geγ∆T r
(Stratton 1941; Hegseth et al. 1999). This force has the same form as the usual
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Figure 2. Plots of the potential energy from terrestrial gravity and the polarization force around the
central sphere. The horizontal coordinate, x, and the vertical coordinate, y, are scaled by the inner
sphere radius ri = 4.76 mm. The potential energy, φ, is scaled by mgri. Shown are the potentials
for two different ∆V values, in (a) ∆V = 3000 V and in (b) ∆V = 4000 V. The effect of terrestrial
gravity occurs throughout the gap between the spheres. The polarization force is largest at the inner
sphere. The maximum polarization force per unit mass, ge, is as high as ge ≈ 2g in (b), where g is
the acceleration due to gravity.

buoyancy forcing, F = gβ∆T z, from density variations in normal gravity, but has a
different orientation. In this incompressible case the equivalent gravity, ge is given by

ge =
2κε0
ρ

(
∆Vrori
d

)2
1

r5
. (3)

This equation gives appreciable equivalent gravity values for small cells at the inner
sphere where the force has a maximum value. Figure 2 shows several plots of the
potential energy function of the above force superposed with the potential energy
from normal gravity in our cell of ri = 4.76 mm, ro = 12.70 mm. It is clear from this
figure that normal buoyancy dominates most of the volume of the sphere (i.e. there
is a very small ge value at the outer sphere). Very close to the inner sphere, however,
we can see a very large slope, mostly from the potential energy of the polarization
force. In fact, at the surface of the inner sphere ge becomes as large as ge ≈ 2g at
4 kV, where g is the acceleration due to gravity. Because β and γ are nearly equal
in the Dow Corning 200 10 cs silicone oil (DC-200 10 cs, Prandtl number, Pr = 10.5)
used in this experiment, we can see that our small system has a large possibility for
instability near the inner sphere.

Our set-up, shown in figure 1, uses a spherical capacitor built from two concentric
spheres. We use the inner sphere’s radius ri as the characteristic length of the spherical
capacitor so that the aspect ratio is Γ = d/ri = 1.67. The aspect ratio, or the
dimensionless gap length, is a single parameter that characterizes the geometry of
this system. This brass inner sphere (ri = 4.76 mm) is grounded and heated with a
Nichrome wire coil glued near the centre of the inner sphere. A thermocouple, also
near the centre of the inner sphere, gives a temperature reading, Ti, in the inner sphere.
The characteristic time for heat transport in the inner sphere is r2

i /κB = 0.6 s, where
ri is the radius of the inner sphere and κB is the thermal diffusivity of brass. Because
this time is much smaller than d2/κS = 624 s, where d is the gap between the spheres
and κS is the thermal diffusivity of the DC-200 10 cs silicone, we see that Ti is the
same throughout the inner sphere to a very good approximation. The outer sphere,
of inner diameter 2re = 25.4 mm, is made of two 6.35 mm thick transparent sapphire
hemispherical domes to allow optical diagnostics and good thermal conduction (i.e.
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Figure 3. The optical set-up for holographic interferometry visualization and shadowgraph visu-
alization. This configuration allows two perpendicular visualizations to be made simultaneously.
M, mirror; BS, beam splitter; SF, spatial filter.

thermal conduction time of 2.8 s). A thermocouple is in contact with the outer
sphere wall to monitor the temperature of the outer sphere. The whole capacitor is
put inside a silicone oil bath of DC-200 10 cs, so that this fluid fills the capacitor
gap (d = 7.94 mm). The bath temperature is controlled by a temperature controlled
external water bath. The experiments are conducted by keeping the outer sphere
temperature, To, constant and slightly elevated from room temperature (usually at
19 ◦C± 0.1 ◦C). The temperature of the inner sphere, Ti, is computer controlled in the
range of 19± 0.1 ◦C to 47± 0.1 ◦C, so that the temperature difference ∆T = Ti − To
can range between 0 ◦C and 28 ◦C. The outer sphere is connected to a high voltage a.c.
transformer driven by a variable voltage and variable frequency power supply. This
high voltage, ∆V , applied across the capacitor could be set from 0 kV to 5 kV (±10 V)
at a frequency of 300 Hz. The field thus reverses polarity in a period much shorter
than the charge relaxation time, τ = 221 s for the fluid. This ensures an absence of
d.c. electric currents and associated effects as discussed above. The high-voltage a.c.
source created large signal fluctuations that decreased Ti (and ∆T ) values for high
∆V values. This problem was solved by compensation in the computer control.

Real-time holographic interferometry was used to visualize the flow when the heat-
ing and/or the voltage were applied. This optical technique allows in situ observation
of a continuously changing process, whereas the usual double exposure technique is
only able to capture phenomena at an instant in time (Vest 1979). This technique gives
a quantitative measure of the average change in index of refraction along the beam
path. The beam path is perpendicular to the image that shows the fringes. This index
change can be directly related to the average temperature field. Shadowgraph visu-
alization was also used at higher ∆T when light refraction became large. At higher
∆T , our visualization typically consisted of a shadowgraph image near the inner
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Figure 4. (a) Interference fringes that form above the inner sphere from hot fluid that flows upward
under the influence of normal buoyancy at Rg = 4.8× 104 (∆T = 4 ◦C). This thermal forcing exists
without an imposed ∆V and creates a large axisymmetric Hadley cell. (b) Several transient cells,
indicated by the arrows, that form when ∆V = 4 kV (REmax = 105.6) is suddenly imposed in the
Hadley cell at Rg = 3.0×104(∆T = 2.5 ◦C). Cells such as these appear with equal probability at any
position along the outer surface of the inner sphere. These are transient rolls and will be replaced
by steady-state travelling rolls if ∆V remains present.

sphere, where refraction effects were large, together with interference fringes farther
away from the inner sphere. A schematic diagram of the optical system used in our
experiment is shown in figure 3. A 20 mW He-Ne laser exposed a Newport HC-300
thermoplastic holographic plate. The reference hologram was exposed and automat-
ically developed in situ while the capacitor was at uniform ambient temperature.
The holographic plate was continuously illuminated by the original reference beam,
while the object beam crossed the capacitor at different temperatures and voltages,
producing an interference pattern. Another simultaneous shadowgraph visualization
was also made in an orientation perpendicular to the interferometric orientation, as
shown in figure 3.

4. Results
We have observed a large-scale cell in the system whenever ∆T is applied between

the two spheres by tracing dust particles in the spherical capacitor and observing the
interference pattern. Because this cell may exist without an imposed ∆V , we conclude
that this is a convective cell driven by the normal buoyancy from density changes. We
characterize this buoyancy driving in the usual way by using the Rayleigh number,
Rg , the ratio of the buoyancy force from g to the viscous force. Because our system
has a ∆T between two spheres, there is always a horizontal temperature gradient
so that there is always a flow. In our case, the Rayleigh number is defined by the
expression:

Rg =
βg∆Tr3

i

νDth
(4)

Where ri, β, ν and Dth are the characteristic length, the thermal expansion coefficient,
the kinematic viscosity, and the thermal diffusivity, respectively. Figure 4(a) is an
interferogram that shows the density change of the hot fluid above the inner sphere
that drives this cell at Rg = 4.8 × 104. The fluid heated close to the inner sphere
moves upward under normal buoyancy, where g points in the downward direction.
A returning flow moves downward by the outer sphere, driven by pressure gradients
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(reaction forces required by continuity) and the downward buoyancy from the cooling
near the outer sphere. These hot and cold currents form an axisymmetric toroidal
cell that fills the gap between the spheres. We call this cell a ‘Hadley’ cell, by analogy
with the Hadley cell in atmospheric dynamics (Guyot 1998).

When the Hadley cell is established at a given ∆T , we have applied a large central
polarization force by applying a large ∆V between the spheres (as explained above
ge ≈ 2g near the inner sphere at 4 kV). We characterize the driving by the dielectric
buoyancy force using another Rayleigh number, REmax, where:

REmax =
2γκε0

νDthρ(1− η)

(ro
d

)2

∆V 2∆T .

Because REmax ∝ ∆V 2∆T , it depends on both external parameters. More details about
REmax are given below. Just after applying a large voltage for a given temperature
difference ∆T , we have seen rolls form close to the inner sphere. Individual rolls in
this pattern are transient, lasting for only several seconds (e.g. 2 s for Rg = 13.2× 104

[∆T = 11 ◦C], and REmax = 1045[∆V = 6 kV]) and then vanishing. A roll can appear
at all places around the inner sphere, including the bottom pole, with no apparent
preferred position, as shown in figure 4(b) which shows a typical example where
several transient rolls have formed just after applying ∆V = 4 kV at Rg = 3.0 × 104

(∆T = 2.5 ◦C and REmax = 105.6). This pattern of transient rolls also disappears
after several seconds and a steady-state convection pattern appears. This steady-state
convection consists of travelling rolls that occur only in the upper hemisphere. These
travelling rolls start near the equator and propagate upward to the top pole. Because
the rolls only exist when both ∆V and ∆T are applied, and only exist close to the
inner sphere where the polarization force is large, we conclude that the dielectric
buoyancy causes this flow.

We have systematically studied the onset of the travelling rolls by slowly increasing
the central polarization force. At a given ∆T , with a steady Hadley cell present, we
slowly increased ∆V between the spheres. At a threshold value of ∆V , we observed
perturbations that start near the equator and travel along the inner sphere at a
slight distance away from it. The interference fringes near the inner sphere show a
slight radial displacement so that the oscillatory perturbations appear as transverse
waves travelling in the polar direction. The amplitudes of these apparently transverse
waves also increase as they travel. At higher ∆V , we see localized roll structures, that
first appear near the equator, propagate toward the top pole where they disappear
simultaneously on both sides of the inner sphere. Figure 5(a) shows a global view
of the shadowgraph and interference pattern formed by these rolls. Figure 5(b)
shows several close-up images of the interference pattern of the travelling rolls.
Simultaneous shadowgraph observations, perpendicular to the holographic optic axis,
have shown the same flow pattern (i.e. rolls appear, propagate upward, and disappear
simultaneously in both orientations). We conclude that these rolls extend around the
sphere forming toroidal or spiral roll patterns that travel upward. The travelling rolls
always appear as ∆V is increased at all ∆T values possible in this experiment. We
have also observed, prior to the onset of the propagating rolls, that increasing ∆V
slightly decreases the interference fringe spacing. We have measured the ∆V values
for the onset of convection for various ∆T (at given To) and the results are shown
in figure 6. The ∆V values plotted are the ∆V when the first slow oscillations appear
close to the inner sphere. The onset values of ∆V , shown in figure 6, were found by
fixing the temperature difference ∆T and increasing ∆V until the oscillations could
be seen in the interference pattern. As can be seen in the figure, at higher ∆T values
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(a) (b)
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Figure 5. A global view of the travelling rolls, indicated by the arrows, at Rg = 3.6×104(∆T = 3.0 ◦C)
and REmax = 198.0(∆V = 5000 V), where Rg and REmax are defined in the text. These rolls form
at all values of Rg ∝ ∆T when RE ∝ ∆V 2∆T is sufficiently increased. They also form near the
equator and travel upward along the circumference of the inner sphere. (b) and (c) illustrate the
propagation of these rolls by showing two close-up interferograms of a travelling roll (taken ≈ 1 s
apart) as it travels toward the top pole, as indicated by the arrows, at Rg = 1.3× 104(∆T = 1.1 ◦C)
and REmax = 72.6(∆V = 5000 V).

the ∆Vc for onset decreased. Because the rolls disappear when ∆V is decreased below
∆Vc, with apparently no hysteresis, we conclude that we have observed a supercritical
Hopf bifurcation to travelling rolls.

As the rolls propagate upward toward the top pole they produce a periodic signal
in the interferogram. We have measured this oscillation frequency using a photodiode
placed at a given point in the interferogram. The oscillation signal was digitized
and then Fourier transformed producing a power spectrum. The power spectrum
shows a frequency peak corresponding to the oscillation frequency of the propagating
rolls. We found several regimes where this frequency showed interesting behaviour
when external parameters were changed. The frequency of the propagating rolls was
measured when ∆T was varied, at a fixed value of ∆V = 4 kV close to the onset of
the propagating rolls, as shown in figure 7(a). The frequency of the travelling rolls
was also measured far above the onset of the travelling rolls when ∆V was varied,
at a fixed value of ∆T = 22 ◦C, as shown in figure 7(b). These fixed values of ∆V in
figure 7(a) and ∆T in figure 7(b) were chosen to allow a wide range of parameter
space to be observed in the travelling roll regime. We can see in both of these examples
that the frequency monotonically increases. In the first case, the frequency spectra was
sharply peaked indicating a well-defined periodic signal, whereas in the latter case,
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Figure 6. Critical voltage amplitudes, ∆Vc, for the onset of travelling rolls as a function of
the temperature difference ∆T (data taken at an a.c. frequency of f = 300 Hz and an ambient
temperature To = 21.6◦C). The onset values where found by fixing ∆T and increasing ∆V until
oscillating roll structures could be seen in the interference pattern. The error bars show the errors
of the ∆V and ∆T values. The middle solid line is the fit to the curve: ∆V ∝ ∆T 1/3. The lines above
and below this line are the limits of the 99% confidence interval. This range is where 99% of the
data would fall in repeated measurements based on the statistics of the given data. These limits are
used to estimate the error of the exponent, 0.33± 0.03. r2 is the correlation coefficient that is used
as a goodness-of-fit parameter, r2 = 0.975.
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Figure 7. Rolls frequency measurements. The oscillating frequencies were measured using a pho-
todiode placed in a given point in the real-time interferogram: (a) frequencies measured as a
function of ∆T at ∆V = 4 kV with To = 20.0 ◦C; (b) frequencies measured as a function of ∆V
with ∆T = 22.0 ◦C and To = 25.0 ◦C. These two figures show that the frequency variation is
monotonically increasing with ∆T and ∆V .

far above the onset of the travelling rolls, the frequency spectra is broadbanded and
the frequencies shown are the peak frequencies. Figure 7(a) also shows the behaviour
of the frequency as ∆T is increased past the onset of travelling rolls. This shows that
the travelling rolls appear as ∆T is increased so that both ∆V and ∆T (or Rg and
REmax) are control parameters for this instability.
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Figure 8. Power measurements to the inner sphere allow the Nusselt number, Nu, to be measured.
Shown above is Nu vs. ∆T for two different values of ∆V . The Hadley cell and the propagating rolls
both transport heat from the inner sphere. The solid lines show the approximate onset of travelling
rolls at 3 kV and 4 kV. The arrows indicate the region where Nu decreases at 3 kV and 4 kV.

We have further characterized this flow by measuring the heat transport from the
inner sphere. This effect is usually characterized by measuring the Nusselt number
(Nu), as a function of ∆T . The Nusselt number for heat transfer from the inner
sphere is defined as:

Nu =
H

κs[∂T/∂r]ri
=
H
(

1− ri
ro

)
ri

κs∆T
. (5)

H is the heat flux transferred between the inner and the outer spheres and κs is
the heat transfer coefficient for heat conduction, otherwise known as the thermal
conductivity. This number is the ratio of the actual heat transfer to the heat transfer
that would occur by conduction alone if the fluid remained at rest. Normally, the
onset of convection is marked by Nu increasing above unity for a bifurcation from a
conductive state. The Hadley cell, however, is present at any ∆T > 0 and prevents a
conductive state from occurring in our system. Nevertheless, we present Nu in figure 8
as a function of ∆T by recording the voltage, Vh, and the current, Ih, to the inner
sphere heater. Below ∆T = 2 ◦C, the heat transport stays roughly constant, implying
that the Hadley flow is steady so that the combined conduction and convection heat
transport stays about the same. Above ∆T = 2 ◦C, this heat transport increases,
probably due to more appreciable Hadley convection. At higher ∆T , corresponding
to the onset of travelling rolls, Nu increases at a greater rate. This change is more
evident at higher ∆V , e.g. at ∆V = 3 kV there is a small change in the Nu slope
at ∆T ∼= 5 ◦C, whereas at ∆V = 4 kV the change in the Nu slope at ∆T ∼= 3 ◦C is
larger. More striking is the behaviour of Nu far above onset where Nu may actually
decrease. These decreases appear to be smaller at higher ∆V , e.g. at ∆V = 3 kV, Nu
decreases by ≈ 10% between ∆T ≈ 6 ◦C and ∆T ≈ 7.5 ◦C whereas ∆V = 4 kV we
observed a decrease of ≈ 6% between ∆T ≈ 8 ◦C and ∆T ≈ 9 ◦C. At ∆T > 6.61 ◦C
for ∆V = 3 kV and ∆T > 5.5 ◦C for ∆V = 4 kV, the roll structures appear disordered
is space and time. The appearance of these turbulent rolls correlates with the decrease
in Nu at ∆V = 3 kV and the levelling of Nu at ∆V = 4 kV of figure 8.

We can see that the presence of the Hadley cell complicates the classical method
of finding the onset of convection by measuring Nu (Ahlers, Berge & Cannell 1993).
Because of this, we have also measured a modified Nusselt number Nu∗ by calculating,
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Figure 9. Variations of the modified Nusselt number Nu∗ vs. ∆T for two different values of ∆V and
Tc = 20.0 ◦C. Nu∗ more directly indicates the effect of the travelling rolls, since they only exist when
∆V is applied. Below the onset of the propagating rolls, Nu∗ ≈ 1. The large fractional increase in
heat transport is due to the travelling roll’s convection. The solid lines show the approximate onset
of travelling rolls at 3 kV and 4 kV. The arrows indicate the region where Nu decreases at 3 kV and
4 kV.

for each ∆T value, the ratio:

Nu∗ =
Heat flux with ∆V

Heat flux without ∆V
=

H∆V

H∆V=0

. (6)

In this way, we obtain a dimensionless measure of the heat transport obtained with
the presence of the high voltage – and the travelling rolls, if they exist – normalized by
the heat transport by conduction and Hadley convection, when ∆V = 0. The results
of Nu∗ are shown at ∆V = 3 kV and ∆V = 4 kV in figure 9. We can clearly see, in
this case, that the onsets of the instability correspond to the values of Nu∗ greater
than one. The onset values are also approximately the same as shown in figure 6.
Below the onset of the propagating rolls, Nu∗ is unaffected by ∆V , and above onset,
Nu∗ increases from the convective heat transport of the propagating rolls. We can
also see that the travelling rolls significantly increase the heat transported from the
inner sphere (Nu∗ increases 30% to 100%) as measured by what it would have been
without the travelling rolls. At ∆T > 5.5 ◦C for ∆V = 4 kV, where the rolls first
appear disordered is space and time, Nu∗ begins to decrease. The appearance of
disordered rolls at ∆V = 3 kV, ∆V > 6.61 ◦C, correlates with a slight decrease in
Nu∗.

5. Discussion
5.1. Rayleigh number for dielectric buoyancy

Because our system has two buoyancy forces we may define another Rayleigh number,
RE , characterizing the buoyancy associated with the electric field gradient. As in Rg ,
defined above, RE is the ratio of the buoyancy force to the viscous force. A particular
base state that is perturbed in pressure, temperature, velocity, or any combination of
these, is unstable if this perturbation grows. Whether a perturbation grows, shrinks or
maintains the same amplitude depends on the value of RE or Rg . The exact value of
RE or Rg where instability occurs could, in principle, be calculated from the equations
of motion of the perturbation. The Rayleigh number appears in these equations of
motion as a dimensionless control parameter and the value of the critical Rayleigh
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number generally depends on the form of the perturbation. We know, however, that
an arbitrary perturbation will grow when the buoyancy force can do work on it (put
energy into the perturbation) at a rate greater than the viscous force dissipates it
(take energy out of the perturbation). In the well-known Rayleigh–Bénard problem,
an infinite horizontal layer is subjected to an unstable linear temperature gradient,
∆T/d. A buoyancy force is produced on a fluid particle if it is pushed off its
horizontal isotherm by a perturbation. The buoyancy force per unit mass, fb, of a
perturbation is βgδT , where δT is the local temperature change produced by the
perturbation. The buoyancy force may be produced by displacing a fluid element
a vertical distance of order δz (i.e. δT = (∆T/d)δz or fb = βg(∆T/d)δz). The
viscous force per unit mass, fν , depends on the form of the velocity that results
from such a perturbation. Without knowing this velocity, vz , we can still estimate
its value from the convective heat transfer balance (Landau & Lifshitz 1987) to be
vzδT/δz ≈ DthδT/δz

2 or vz = Dth/δz so that fν ≈ νvz/δz
2 = νDth/δz

3. We obtain,
finally, that fb/fν ≈ βg∆Tδz4/(dνDth) > 1 when the instability occurs. The value
of δz is also unknown because the order of the size of a perturbation depends
on the form of a perturbation. We can see that δz has to be less than d and,
in fact, a perturbation that produces a displacement of δz ≈ d will results in
the largest fb/fν . This corresponds to the observed cell size in Rayleigh–Bénard
convection. Actual perturbations are much smaller than this so that the critical
Rayleigh number Rcg = βg∆Td3/νDth � fb/fν > 1, and in fact Rg ∼ 1000 for a
horizontal layer, with the exact value depending on the boundary conditions and
geometry.

We can use a similar argument to define a control parameter for a perfectly
spherically symmetric system with a radial temperature gradient and a central force.
In such a system, we would also expect that convection would begin when the
dielectric buoyancy force is sufficiently greater than viscosity, or when fb/fν > 1. In
this case where g = 0, the base state would be a stationary fluid with heat conducting
from the inner to the outer sphere. The temperature distribution is found by solving
the Laplace equation with T (ri) = Ti and T (ro) = To,

∆T ′(r) =
∆T

1− η
(

1− ri

r

)
, (7)

where η = ri/ro 6 1, is the radius ratio (η = 0.38), and ∆T ′(r) = Ti − T (r).
We next let a perturbation result in a displacement normal to these steady-state
isotherms. Such a radial displacement of a fluid element produces a buoyancy force
fb = γgeδT = γge(r)(dT

′/dr)δr ∝ δr/r7, where δr measures the perturbation size.
The radial velocity, from the energy balance in spherical coordinates is vr = Dth/δr,
so that fν = Dthν/δr

3.
As in the horizontal case, we have to make assumptions about the particular

perturbation to know δr because there is no natural scale in this problem to measure
it. We can, however, consider the largest possible displacement δr of a perturbation. In
this case, we consider the largest possible relative outward displacement of δr/r = d/ri
of a perturbation and the largest possible relative inward displacement δr/r = d/ro
of a perturbation. The characteristic length in the horizontal case, d, refers to the
gap where a given ∆T has been externally imposed. In spherical geometry, both the
force and the temperature refer to the natural origin present in concentric spheres,
so an appropriate length scale is ri instead of d. In our experiment, r varies between
1 6 r/ri 6 1/η = 2.65 so that ri is both an appropriate and convenient length scale.
Using this length scale, and because both ∆T ′ and ge depend on position, we obtain



310 K. Amara and J. Hegseth

a radially varying Rayleigh number:

RE =
C∆V 2∆T(
r/ri
)7

, C =
2γκε0

νDth ρ(1− η)

(ro
d

)2

. (8)

In this case, as in the horizontal layer case, when RE is above a threshold value, RE >
RE

c where perturbations grow, this conductive state is unstable and roll structures
grow. Because ge ∝ ∆V 2/r5 and ∆T ′ ∝ ∆T/r, RE depends on ∆V , ∆T and position.
RE reaches a maximum, REmax, at the surface of the inner sphere where the buoyancy
force is largest and where the temperature is highest. It is therefore most likely that
unstable perturbations occur at r/ri = 1. In fact, we have only seen the roll structures,
like those shown in figures 4 and 5, near the inner sphere. Values of REmax are given
for the images in figure 4 and 5. We can see that in this spherically symmetric case

we would expect that at REc , ∆Vc ∝ ∆T
−1/2
c .

Figure 6 is a set of critical values, ∆T = ∆Tc and ∆V = ∆Vc, for the onset of
travelling rolls. In other words, they are a set of points that satisfy the conditions.
RE(∆Tc,∆Vc) = REc. Fitting the curve in figure 6 to a power law, however, shows
the experimental points, over approximately two decades of ∆T , give the following
relation:

∆Vc ∝ ∆T−1/3
c , (9)

where the exponent is −0.33 ± 0.03. If all the other parameters are taken to be
independent of position, as in the above case, REc is also independent of position,

so that at the onset of propagating rolls we should expect that ∆Vc ∝ ∆T
−1/2
c . In

addition, if RE depends only on r, ∆T and ∆V , we would expect the rolls to form
uniformly around the sphere. The rolls, however, appear in the upper hemisphere, as
shown in figure 5, and the rolls consistently start near the equator when either ∆T or
∆V is slowly increased. This implies that RE must also depend on the polar angle, θ.

5.2. Polar angle dependence

The polar angle dependence of the total body force may be inferred from the gradient
of the potential in figure 2. Vertically above the central sphere, the polarization force
and gravitational force are parallel, adding to a larger net force. Vertically below
the central sphere, these same forces oppose each other, producing a smaller net
force. Clearly the spherical symmetry of the ideal case is broken even before ∆T
or ∆V are applied to the system. The potential in figure 2 shows a saddle point
vertically below the sphere (the potential is maximum in the vertical direction and
minimum in the horizontal). This is also a point of weightlessness given by the
condition g = ge = k∆V 2/r5

w , where the constant k is given in equation (3) and rw
is the weightless radius. This saddle point is a point of stable equilibrium in the
vertical direction – with each buoyancy force providing a vertical restoring force – and
unstable in the horizontal direction. In this experiment, rw extends out from the inner
sphere only slightly (e.g. (rw − ri/d = 0.04 at ∆V = 4000 V). The cells shown in
figures 4 and 5 are approximately an order of magnitude larger. The cell thickness,
∆r, may be described by using a dimensionless cell thickness, D, where D = ∆r/ri.
D is estimated from typical images such as those in figures 4 and 5, to be at most
1
2
(D < 1

2
) for all parameter values used in this experiment. At D = 1

2
we find that

ge ≈ 0.13 g at 3000 V and ge ≈ 0.24g at 4000 V. Even though the two forces point
mostly in different directions in the flow domain, rw is a natural scale for separating
of the two buoyancy effects, because at r > rw the gravitational buoyancy is always
dominant and at r < rw dielectric buoyancy is always dominant. In the equatorial
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Figure 10. A schematic diagram of the Hadley cell flow in a vertical plane with a sketch of
the Hadley cell streamlines. This flow breaks the spherical symmetry while retaining azimuthal
symmetry. The quantities Uu, Ud and U ′u are also shown. The equatorial planes and definition of
the quantity ∆L that is used in the text.

plane, normal buoyancy has no radial component so that the radial buoyancy is
totally due to the polarization force. The condition, g cos θ = ge = k∆V 2/r5 defines
an azimuthally symmetric surface in the bottom hemisphere of zero radial force that
includes the saddle point and asymptotically goes to infinity at the equator. Near this
surface there is a region where the total radial buoyancy is very small.

The normal buoyancy that causes the background Hadley cell is always present
before the onset of travelling rolls, and this flow also breaks the spherical symmetry
of the above ideal case, as shown schematically in figure 10. In fact, before the onset
of the propagating rolls we can see a polar dependence of the fringe spacing, with
the fringes closest together at the bottom pole and the spacing increasing toward the
top pole (cf. figure 4). These fringes that roughly correspond to isotherms show that
the Hadley convection introduces a polar dependence in the temperature distribution.
Below the inner sphere, the azimuthally symmetric Hadley cell makes a cool upward
flow toward the bottom pole producing a stagnation point near the bottom pole
so that conduction is the dominant heat transfer mechanism at the bottom. The
isotherms are compressed at the bottom pole because cool fluid from the Hadley cell
arrives at the hot inner sphere. The isotherm spacing increases along the inner sphere
as heat is conducted into the fluid from the inner sphere and advected upward by
a flow that may have some similarities to a thermal boundary layer. This hot fluid
near the inner sphere leaves the inner sphere above the equator, spreading out the
isotherms above the inner sphere, as shown in figure 4(a).

5.3. Boundary flow

Because our system is bounded, analogies with the usual boundary-layer theory are
limited, especially because there is no externally imposed velocity and the recirculating
fluid is probably driven to a large extent by pressure gradients that violate the
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Figure 11. The behaviour of L = ∆L/ri, where ∆L is the distance from the inner sphere to the
zero velocity radius in the equatorial plane, as shown in figure 10. The parameter R is the ratio of
the average upward velocity, Uu, to the average downward velocity, Ud in this plane. The relation
between these two is found by conservation of mass. We can see that L decreases with R in analogy
to a boundary layer. Also shown is the R corresponding to L = 1/2.

assumption of small pressure gradients in the flow. Nevertheless, the data in figure 5
show that D(θ) increases along the inner sphere from the bottom pole toward the
equator because it traces something that appears similar to a thermal boundary
layer around the inner sphere. Because the Prandtl number is Pr = 10.5 we would
expect such a thermal boundary layer to be relatively thin. However, the fluid is in
fact recirculated in the Hadley cell, so this layer may be larger in steady state. In
the equatorial plane, there must be both upward-moving hot fluid near the inner
sphere and downward-moving fluid near the outer sphere. Taking ∆L to be the radial
dimension of the upward-moving region, as shown in figure 10, conservation of mass
implies, Uu[π(ri+∆L)2−πr2

i ] = Ud[πr
2
o−π(ri+∆L)2], where Uu and Ud are the average

velocities of the upward- and downward-moving fluid, respectively. To estimate the
∆L, we require the ratio of R = Uu/Ud that is also a measure of the driving of the
system by the inner sphere heating. This gives

L =
∆L

ri
=

[
1 +

η2 − 1

1 + R

]1/2

− 1, (10)

with η = ro/ri = 8
3
. Figure 11 shows the behaviour of L as a function of the driving

as characterized by R. This plot shows that as the driving increases the dimensionless
layer width L becomes smaller. This is similar to an open-flow thermal boundary
layer that also decreases in width as the external velocity is increased. The downward
flow is primarily driven by the reaction pressure gradient from the upward-moving
fluid column above the inner sphere. This reaction pressure for an incompressible
fluid is an expression of the constraint of mass conservation. The upward-moving
column of fluid is driven by normal buoyancy and it has an average upward velocity
of U ′u over an area very nearly π(ri + ∆L)2 for a small inner sphere. The approximate
expression for the total upward-moving column of mass, U ′uπ(ri + ∆L)2, is the same
as the downward-moving mass, so that U ′uπ(ri + ∆L)2 ≈ Ud[πr

2
o − π(ri + ∆L)2]. The

two upward velocities have different velocity scales. The flow at the equator is similar
to a thermal boundary layer, so the velocity scales as Uu ∼ ν/ri. The flow above
the inner sphere is similar to thermal convection in a horizontal layer and scales as
U ′u ∼ Dth/ri. We write U ′u = f(∆T )Dth/ri and Uu = g(∆T )ν/ri where the functions f
and g are determined by the solution to the equations of motion with an averaging
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over the appropriate area. The above conditions give:

R =
Pr

h(∆T )

η2 − 1

η2
, h(∆T ) =

g(∆T )

f(∆T )
. (11)

Figure 11 shows that when L is the cell thickness, L ≈ 1
2

and R ≈ 4. Using the values,

Pr = 10.5 and η = 8
3

find that the factor h should be h ≈ 2.3.

5.4. Travelling roll onset

We have also observed that ∆V has an influence on the spacing of the fringes
and the shape of the isotherms. Prior to the onset of the propagating rolls, when
a smaller ∆V is applied, the fringe spacing decreases, indicating that isotherms
become more compressed toward the inner sphere. The dielectric buoyancy clearly
influences the Hadley convection before the onset of travelling rolls. If a large ∆V
is suddenly applied, this additional buoyancy produces transient rolls that reorganize
into travelling rolls. This shows that the steady-state Hadley cell without ∆V may
produce a potentially unstable layer even near the bottom pole, where a cell may
form. Because the travelling rolls bifurcate from the Hadley cell base flow, the upward
motion of the rolls must be caused by both normal buoyancy and the interaction
of the new flow from the instability with the Hadley cell. The stress on the Hadley
cell from these smaller rolls soon changes the situation so that fluid near the bottom
hemisphere of the inner sphere is no longer unstable. Nevertheless, the presence of a
roll near the bottom of the inner sphere, where dielectric buoyancy is opposite to the
normal buoyancy eliminates normal buoyancy as a possible cause of this instability,
although normal buoyancy is clearly influential in its evolution after onset.

Because the travelling rolls are consistently seen to start near the equator and
near the inner sphere, this is probably a point in the flow where a perturbed fluid
element experiences the most buoyancy and the least viscous resistance (i.e where
fb/fν is a maximum). As in the previous discussion, we perturb a fluid element to a
temperature that differs by δT from the steady temperature distribution before onset.
In our experiment, the dielectric buoyancy becomes larger than normal buoyancy near
the inner sphere, but never so large as to make normal buoyancy insignificant. The
instability, however, occurs close to the inner sphere where the dielectric buoyancy is
large and it only occurs when ∆V is applied. We therefore let fb refer to the dielectric
buoyancy for the purposes of discussing the onset. The dielectric buoyancy, fb, also
tends to force fluid elements in the outward radial direction. The viscous force fν ,
refers to the force experienced by a perturbation moving relative to the Hadley cell
flow. The viscous stress on an outward radial perturbation is azimuthally symmetric
in the Hadley cell. It is also smaller in the upper hemisphere (Hadley flow tends to
move away from the sphere in the upper hemisphere) than in the lower hemisphere
(flow tends to move toward the sphere). At the equator, all of the velocity in the
Hadley cell is in the θ-direction so that a perturbed fluid element will be advected
by the flow and vertically accelerated by normal buoyancy to a position of different
fb. An adiabatic δT is also changed when the perturbed fluid element is rotated
or strained by the base flow. As in the simpler case above, there are several factors
in fb that contribute to its form. As discussed above, the temperature in the fluid,
∆T ′ = Ti − T depends on the position (r, θ) and the voltage ∆V , so that we can
express the function ∆T ′ as ∆T ′ = ∆Tf′(r, θ,∆V ) where f′(r, θ,∆V ) ≈ O(1) such
that f′ = 0 at r = ri and f′ = 1 at r = ro. The exact form of this function can,
in principle, be found from the equations of motion and the energy equation. The
function fb = γgeδT = γge(r)(dT

′/dr)δr is also dependent on (r, θ,∆V ). The function
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fν also depends on (r, θ,∆T ) through the velocity and its derivatives. Therefore,
the ratio fb/fν depends on (r, θ,∆V ,∆T ). We take the ratio fb/fν to be modified
from the spherically symmetric case (i.e. with fb/fν = RE ∝ ∆T∆V 2) by a function
p(r, θ,∆V ,∆T ). It then has the form fb/fν = RE = ∆T∆V 2p(r, θ,∆V ,∆T ). At REc ,
we know from the experiment that p has a maximum at the equator and near the
inner sphere where the rolls start. We also know that from equation (7), the relation
between ∆Vc and ∆Tc, that RE

c ∝ ∆Vc∆Tc
1/3 for onset from the data in figure 6. At

onset RE
c = ∆Tc∆V

2
c p(rc, θc,∆Vc,∆Tc) so that p ∝ ∆T

−2/3
c ∆V−1

c .

5.5. Travelling roll frequency and heat transfer

As reported above, the heat transport increases below the onset of travelling rolls.
This increase is caused both by the convective transport from the Hadley cell and
the increased local temperature gradient near the inner sphere when ∆V is applied.
As ∆T increases, the velocity and velocity gradient near the inner sphere increases
so that Nu also increases. Above the onset of travelling rolls, the data shows more
scatter. Although the heat flow generally increases as ∆T increases above onset, it
sometimes decreases as ∆T increases, as shown in figure 8. Figure 9 shows the ratio
of heat transferred with ∆V to the heat transferred without ∆V , (i.e. Nu∗). The ratio
measures the influence of the travelling rolls on the heat transfer more directly. The
heat transferred from the inner sphere is greatly increased when the travelling rolls
first appear, compared to what it would have been without this instability. This
is especially true at the higher ∆V . The smaller-scale rolls produce larger average
velocity gradients near the inner sphere. This, together with radial flow that pumps
hot fluid away from the inner sphere, produces a much larger heat transfer than the
Hadley cell. Before the onset of travelling rolls, Nu∗ also shows a slight increase.
If ∆V had no influence on the heat transported, then Nu∗ would be 1 until onset.
As discussed above, when ∆V is applied, the fringe spacing decreases, indicating the
temperature gradient has also increased. Because the Hadley cell velocity is driven by
normal buoyancy, there is more heat convected upward from regions of hotter fluid
that are closer to the inner sphere.

Figure 7(a) shows that the frequency of the travelling rolls increases with ∆T
as the onset of travelling rolls is crossed. The interferometric and shadowgraphic
visualization show, however, that the wavelength of the rolls does not change much
with ∆T , showing that the roll velocity increases with ∆T , as it also appears to do
on videotape recordings. The fringe contrast also appears to increase near onset,
implying that the amplitude of the travelling rolls also increases near onset. The onset
of these rolls appears to have some of the usual characteristics of a supercritical
Hopf bifurcation. The velocity increase, however, is not typical of such a bifurcation.
The velocity increase with ∆T is caused by several affects. First, the Hadley cell
velocity should also increase with ∆T so that the stress from the Hadley cell on the
travelling rolls increases and the travelling roll velocity increase follows. Secondly, as
∆T increases, the normal buoyancy force that pulls hot fluid upward also tends to
increase the travelling roll velocity. These changes in the convection dynamics are
also reflected in the significant increase in heat transport shown in figure 8 and 9.

Far above the travelling roll onset (Rg > 7.9×104 for ∆V = 3 kV and Rg > 6.6×104

for ∆V = 4 kv), the roll structures appear disordered in space and time. We have
recorded the time series of these disordered travelling rolls. The Fourier transform
of their time series is not a sharp peak, as it is near onset, but is a broadened
frequency band that still has a definite peak or maximum. Figure 7(b) shows how this
frequency maximum monotonically increases as ∆V is increased. The increase in the
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peak frequency of these disordered travelling rolls with ∆V is caused by an average
wavelength decrease of the rolls as ∆V is increased. The travelling rolls exist close to
the inner sphere in a layer that is defined by a larger ge(r) where the Hadley cell flow
is unstable. The size of this unstable region corresponds to the size of the rolls. When
∆T is kept constant and ∆V increases, the size of this unstable region decreases and
so does the typical propagating roll size. The typical roll velocity, however, is defined
by the interaction of the Hadley cell and normal buoyancy that stays constant. This
constant average velocity with decreasing average wavelength implies an increasing
average frequency, as seen in the data. This decrease in roll size corresponds to an
increase in roll vorticity, so that more heat may be transported from the inner sphere
to the Hadley cell, as can be seen in the two curves of figures 8 and 9 that show more
heat transfer at higher voltage.

After the initial increase in heat transfer at the onset of travelling rolls, the heat
transport coefficient both increases and decreases with increasing ∆T . This happens
both in terms of Nu and Nu∗, shown in figures 8 and 9. A comparison of these
two figures shows that these decreases do not always occur in the same temperature
intervals. At 3 kV, for example, Nu decreases in the interval 6 < ∆T < 7.5 while Nu∗
slightly increases in the same interval. In this interval, the travelling rolls continue to
increase the relative heat transfer, while the absolute heat transfer from both flows is
decreasing. This suggests that the heat convected by the travelling rolls is not being
transported to the Hadley cell. The travelling rolls and the Hadley cell are not mixing
fluid as vigorously as at lower ∆T so that more heat remains in the travelling roll
region. The flow may have made another bifurcation that results in the decrease
in heat transport. A bifurcation that breaks the azimuthal symmetry, for example,
should decrease the kinetic energy of the radial component of velocity flow to create
azimuthal flow so that less heat is transported to the Hadley cell and more heat
remains in the travelling roll region. As discussed in Hegseth (1996), the Reynolds
stress from a spatially separated turbulent region may strongly influence the laminar
flow. We expect such spatially separated turbulent and laminar flows (Hegseth 1996)
in this system at higher RE and Rg . The Reynolds stress from the turbulent roll
structures may be forcing the mean flow of the Hadley cell around the turbulence so
that more heat remains in the turbulence and less heat is transported from the inner
sphere.

6. Conclusion
The fluid in this system has two forces applied to it when it is heated, one large scale

and one small scale. A large-scale axial force from normal buoyancy always drives a
Hadley cell in the fluid. A smaller-scale radial force from dielectric buoyancy drives
the travelling rolls at all ∆T when sufficiently large ∆V is applied. The conditions for
the onset of the smaller-scale travelling roll instability must come from the larger-scale
Hadley cell and the detailed structure of this flow is probably the cause of the power
law relation ∆V ∼ ∆T−1/3. The Hadley cell drives the travelling rolls so they travel
upward, while this small-scale flow pumps hot fluid into the Hadley cell, producing a
large increase in heat transfer.

There are some similarities between this system and large-scale geophysical flows.
This system has some similarities to a planetary liquid outer core subjected to a
strong external gravitational field. The radial force in spherical geometry together
with a mixing convective layer near the inner sphere also has some similarities to the
atmospheric boundary layer (Sorbjan 1989). Although this system has significantly



316 K. Amara and J. Hegseth

different geometry from most atmospheres, a planet may have a thin unstable layer
near the planetary surface surrounded by a thicker stable layer, as in the case of
the earth. Our system also has an unstable layer close to the surface, surrounded
by a stable flow in the outer layer. In fact, the earth also has a large-scale Hadley
cell, driven by the large-scale horizontal temperature gradient from the non-uniform
heating of the sun. The large heat transport increase from the inner sphere shown in
our experiment shows that this surface convection can be quite important in such a
system, i.e. a highly conductive solid in contact with less conductive fluid still loses
significant heat when convection is present. Another interesting result is the decrease
in heat transport at larger ∆T .
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